What are the differences between EPA Method 533 vs 537.1?

Per- and polyfluoroalkyl substances (PFAS) are a group of harmful organic compounds that are very persistent in structure. What this means is PFAS compounds accumulate in the environment over time as they do not break down easily. This makes it a concern to regulate and test these compounds as they have been shown to have adverse effects. One of the most common ways that someone would come in contact with PFAS is through drinking water. There are two notable EPA regulated methods that laboratories can use to analyze PFAS compounds, EPA method 533 and 537.1. When evaluating how to handle these methods in your lab there are some key differences in how to approach PFAS testing. See our earlier blog extracting perfluorinated compounds from drinking water – why is it so challenging?

EPA method 533 is a compliment to method 537.1, including an additional 11 compounds and excluding 4 compounds from 537.1. When used together, twenty-nine compounds can be tested in drinking water. All of these can be visualized in the table below, showing the acronyms for each compound and what methods they are tested in. Specifically, method 533 focuses on PFAS compounds that have short carbon chains, which are those with carbon lengths of C4 to C12. The first major difference between the two methods is the type of solid-phase extraction media that is used. Method 533 uses polystyrene divinylbenzene with a positively charge diamnino ligand and isotope dilution whereas method 537.1 uses styrene-divinylbenzene (SDVB) media. So, when it comes to preparing for the extraction of these compounds it is important to ensure that you are using the right type of cartridge to get the best results. The other major difference that goes hand-in-hand with the media type, is how the extraction techniques differ. With method 533; methanol and 2% ammonium hydroxide are used for extraction elutions, evaporated to dryness with a nitrogen blowdown and water bath, and then reconstituted with 20% water in methanol. However, with method 537.1, just methanol is used for extraction elutions and after it has been concentrated to dryness it is reconstituted with a 96:4 methanol:water mixture instead.

In summary, while the overall extraction process is similar, the media type, elution solvents, and reconstitution process differ between the two methods. These are the key things that you need to keep in line so that the similar extractions do not get mixed up. The easiest part to keep together is the fact that despite the differences in the extraction methods, both are analyzed on LC-MS-MS. Hopefully, this helps you to get started on understanding the key differences between the two methods and how to extract them.

If you are looking to certify or currently running EPA method 533 and or 537.1 in your lab I have included links to Biotage solutions that can help to get you started and improve your laboratory’s workflow.

Evaporation/Concentration System

TurboVap® LV Automated Solvent Evaporation System

Method 537.1

ISOLUTE® 101 SPE column

Method 533

EVOLUTE® EXPRESS Wax in a 6-mL format (150 mg) or

EVOLUTE® EXPRESS WAX 500 mg bed mass

Myth Busters: Smaller Sample Volumes

EPA Method 1664B

Have you ever had days of extracting oil and grease samples and thought to yourself “there must be an easier way to work with wastewater samples”? Whether you run oil and grease samples by liquid-liquid extraction (LLE) or by solid-phase extraction (SPE) it can be challenging at times to efficiently extract 1-liter samples due to the sample matrix. Wastewater is challenging and can be very complicated and contain many types of particulates and or detergents. The makeup of the sample not only interferes with efficient extractions due to matrix issues (such as emulsions) but can also cause slow flow rates.

Continue reading Myth Busters: Smaller Sample Volumes

Simplifying Water Extractions with SPE – One Matrix, One Method Extraction

Have you ever thought to yourself I wish there was one way to effectively extract all of our aqueous samples?  For instance, there are several methods available to extract aqueous samples, such as extraction method 3510 liquid-liquid extraction (LLE), method 3520 continuous liquid-liquid extraction (CLLE), and method 3535 solid-phase extraction (SPE).  Wouldn’t it be more convenient to use one extraction method within the lab for most if not all of your aqueous extractions?

Continue reading Simplifying Water Extractions with SPE – One Matrix, One Method Extraction

Overcoming drying and concentrating bottlenecks in the lab

Working in an environmental lab requires a lot of concentration, both mentally and for the samples that you are working with. When New England finally begins to thaw and local companies rush to get their samples completed, a bottleneck that is usually experienced is the drying and concentration of so many samples.  This bottleneck is partly due to ensuring that samples are extracted within their holding times. There have been many times I have had to multitask while concentrating samples on the TurboVap® classic, leading to some extra work when that rare sample was overconcentrated.  Many of my past coworkers brought up the challenge they faced with the extraction of water and soils. In my opinion, the bigger issue was drying and concentrating.  My main complaint with these steps was it was never efficient enough and I always had to baby each step so that all of my hard work (shaking the sample) did not go to waste.  What I strived for most in the lab was an efficient and streamlined workflow for this part of the process.

Continue reading Overcoming drying and concentrating bottlenecks in the lab

How does your sample prep change for LC/MS vs GC/MS

When preparing your extracts for analysis, it is important to know which instrument to use and why you should be using that specific one.  Of course, we know that each EPA method dictates which analysis instrument must be used within each method, however, we will be determining why that option was chosen in the first place in this blog post! Continue reading How does your sample prep change for LC/MS vs GC/MS

Reusable vs single-use disk holders – Which is best-suited for your application?

Have you ever thought to yourself am I using the best solid phase extraction disk offering for my application? Or can our prep lab turn samples around more efficiently if we choose a different SPE disk platform such as a single-use disk holder instead of cleaning our reusable holders? Those are just a few questions I receive when working with sample prep solutions with customers when SPE disks are brought up in the conversion.

Continue reading Reusable vs single-use disk holders – Which is best-suited for your application?

Automating EPH Fractionation in the Lab

Anyone familiar with Extractable Petroleum Hydrocarbons (EPH)  methods such as those developed by Massachusetts DEP, New Jersey DEP, or one of the other various state agencies that regulate EPHs is familiar with the long and grueling process of fractionation. These methods require you to split the initial sample extract into two distinct fractions, the aromatic and aliphatic portions, which allow you to better characterize hydrocarbons that may be affecting the environment (for more info read out previous blog post). It is most commonly achieved through a manual method which is driven by only gravity that can cause quite a bottleneck in the lab. This process can be particularly finicky requiring you to determine the exact volumes needed so that you do not elute one fraction’s compounds into the wrong fraction by mistake. On top of this, the traditional procedure involves the use of gravity to elute the fractions through a cartridge which requires a lot of hands-on time to ensure that the cartridge does not go dry and that it is moved at the correct time. All in all, this process can cause many a headache when it does not run smoothly.

Biotage Extrahera

Continue reading Automating EPH Fractionation in the Lab

Biotage Horizon 5000 and FT-IR Detection – Expanded Detection Possibilities

IR technology is a rapid and convenient tool for both qualitative and quantitative analysis that has been around for over a century. Traditional IR spectroscopy relies on vibration energies from the molecular bindings, where IR emission is absorbed by the bond when it has the same frequency as the specific vibration or movement as the bond.

Continue reading Biotage Horizon 5000 and FT-IR Detection – Expanded Detection Possibilities

Extractable Petroleum Hydrocarbons (EPH) Fractionation and Bottlenecks in the Laboratory

Anyone familiar with EPH methods such as those developed by the Massachusetts or New Jersey Department of Environmental Protection is familiar with the long and gruelling process of fractionation. For those unfamiliar, with EPH or Extractable Petroleum Hydrocarbons it is an extraction that essentially occurs in two distinct parts: the initial extraction & concentration and then the fractionation of that initial extract into the aromatic and aliphatic fractions followed by concentration again.  EPH is a method that replaces the TPH (Total Petroleum Hydrocarbons) or 8015 methods and allows for the calculation of specified carbon ranges giving you a more accurate assessment of potential health risks.

Continue reading Extractable Petroleum Hydrocarbons (EPH) Fractionation and Bottlenecks in the Laboratory

EPA Methods and the Use of Drying Techniques

Do you ever tire of using sodium sulfate to dry your extracts?  I know I do.  That is why, whenever I get the chance to avoid using it, I do.  The worst experience when using sodium sulfate is when you do not use enough of it, and the sodium sulfate reaches its maximum capacity leading to water breakthrough into your ‘what was supposed to be a dried extract.’  Then, you must dry the extract again with more sodium sulfate.  When you are a high throughput lab, redoing steps is not ideal.  Unfortunately, EPA Methods 525.2 and 525.3 require sodium sulfate drying as the drying technique, to name a couple, but not all EPA methods require sodium sulfate for drying.  That is why when there is an alternative technique available and you are permitted to use it, why not use it?!

Continue reading EPA Methods and the Use of Drying Techniques